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Chapter 4: Relations

& TONGJI SEM

4.1 Definition and Representation of Relations
m 4.2 Relational Operations

m 4.3 Properties of Relations

®m 4.4 Equivalence Relations and Partial Order

Relations
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4.2 Relational Operation ) it

=27 TONGJISEM

m4.2.1 Basic Operations of Relations
* Domain, range, domain (again), inverse, composition
* Properties of basic operations
m4.2.2 Power Operations of Relations
°Definition of power operations
*Methods of power operations

*Properties of power operations
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4.2.1 Basic Operations of Relations RN [l i 5 0%

% Domain, Range, and Field &/ TONGJISEM

m Definition 4.10: Domain, Range, and Field
domR = {x | 3y (<x,y>eR) }
ranR = {y | 3x (<x,y>€R) }
fldR = domR U ranR

->>>Example:
R= {<a,{b}>,<c,d>,<{a},{d}>,<d,{d}>}, then
domR ={ q, c, {a}, d }
ranR ={{b}, d, {d}}
fldR ={ a, c, {a}, d, {b}, {d}}
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4.2.1 Basic Operations of Relations TN i B 55

L Inverse and Composition of Relations &2 TONGJISEM

m Definition 4.11: The inverse of R
R = {<y,x> | <x,y>eR}
m Definition 4.12: Composition of R and S
RoS = |<x,z> | 3y (<x,y>eRA<y,z>€S) }

>»>Example: R={<1,2>, <2,3>, <1,4>, <2,2>}
S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>}
R1={<2,1>, <3,2>, <4,1>,<2,2>}
RoS ={<1,3>, <2,2>, <2,3> }
SoR ={<1,2>, <1,4>, <3,2>, <3,3>}
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4.2.1 Basic Operations of Relations TN [ 5

L Find the composition using a diagram e VTR,
Use the diagrammatic (not relational diagram) method to
find the composition.
>>>Example: R={<1,2>, <2,3>, <1,4>, <2,2>}
S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>}

RoS ={<1,3>, <2,2>, <2,3>}
SoR ={<1,2>, <1,4>, <3,2>, <3,3>}
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 Properties of Inverse Operations & TONGISEM

m Theorem 4.1: Let F be an arbitrary relation, then:

(1) (F1)*=F
(2) domF-'=ranF, ranF'=domF
m Proof:

(1) For any <x, y>, by the definition of inverse, we have<x,
y>e(F-)'1o <y, x>eF 1o <x, y>EF
Thus, (F')'=F
(2) For any x,
xedomF'< Jy(<x, y>EF)
< Jy(<y, x>EF) < x&ranF
Thus, domF-'= ranF.
Similarly, we can prove ranF~' = domF.
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4.2.1 Basic Operations of Relations

T Wl i 2045

L Associativity and Inverse Operations of Relational Composition=" ToNGJIstm

m Theorem 4.2:
Let F, G, and H be arbitrary relations, then:
(1) (FeG)oH=Fo(GoH)
(2) (FoG)'= G 1oF

mProof (1) : For any <x,y>,
<X, y>e(FoG)oH
< Jt (<x, t>EFoGA<t, y>EH)
< 3t (Is (<x, s>EFA<s, t>&G)A<t, y>EH)
< 3t 3s (<x, s>EFA<s, t>&GA<t, y>EH)
< s (<x, s>EF At (<s, t>EGA<t, y>EH))
< 3Js (<x, s>EFA<s, y>&GoH)
< <X, y>EFo(GoH)
Thus, (FoG)oH = Fo(GoH)
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4.2.1 Basic Operations of Relations TN [l i €5 0%

, Associativity and Inverse Operations of Relational Composition = TonGiisem

m Theorem 4.2:
Let F, G, and H be arbitrary relations, then:
(1) (FeG)oH=Fo(GoH)
(2) (FoG)'= G 1oF

m Proof (2): Forany <x, y>,
<X, y>E(F-G)™
S <y, X>EFG
< At (<y, t>EFA(t, x)EG)
&t (<x, t>EGIA(L, y)EFT)
& <X, YP>EGoF?
Thus (FoG)™ = GloF
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4.2.1 Basic Operations of Relations RN [l i 5 0%

L Relational Composition of the Identity Relation /, & TONGJISEM

m Theorem 4.3: Composition of the Identity Relation I,
Let R be a relation on A, I, is the Identity Relation on Set A
then Rel,=1,0R =R

m Proof For any pair <x, y>
<X, y>ERol,
< 3t (<x, t>ERA<L, y>€l,)
< 3t (<x, t>ERAt=yAyEA)
< <X, Y>ER
Thus, Rol,=R.
Similarly, we can prove that /,oR=R.
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4.2.2 Power Operations of Relations TN il i 455

L n-th power of R (R™) & TONGJI SEM
m Definition 4.13: R"

Let R be a relation on A, and n be a natural number. The n-
th power of R is defined as:

(1) R°={<x,x> | x€A} =1,

(2) R™1 = R"oR

ENote:
° For any relations R, and R, on A, we have,
R°=R,S°=1,
* For any relation R on A, we have: R' =R
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4.2.2 Power Operations of Relations TN il 1 4505

4 Methods of power operations « matrix multiplication &/ TONGJI SEM

mFor a relation R represented by a set, computing R" means the

composition of R with itself n times.

mThe n-th power of a relation is equal to the n-th power of its matrix

representation.

mThe matrix representation of a relation is obtained by matrix

multiplication, where addition is performed using logical addition.

> Example: %A = {a, b, ¢, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>},
Find the powers of R, and represent them using both a matrix and a
relation diagram.

Solution: The relation matrix for R and RZ are as follows:

0 1 0 0 0 1 0 0] [0 1 0 0] [ O 10
w_|t 010 Lo (1010 |1010_fo101
0 0 0 1 000 1/ (0 0 0 1] [0 000
0 0 0 o 0 0 0 ol lo o ool loooo
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4.2.2 Power Operations of Relations TN il 1 4505

4 Methods of power operations « matrix multiplication &/ TONGJI SEM

«>>»> Example: Let A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>},
Find the powers of R, and represent them using both a matrix and a
relation diagram.

Solution: The relation matrix for R?® and R4 are as follows:

0 1 0 1] 1 0 1 0
5 (1 0 1 0 s+ [0 1 0 1
M™=10 0 0o o/ M ={0o 0 0 o
0 0 0 0 0 0 0 O
Thus: M* = M%, R* = RZ, Then we can find
R:2=R4=R¢=.., R3=R>=R"=..
1 0 0 0
0 — : -, 010 1 0 O
R® = I, relation matrix : m*=| o |
0 0 0 1
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4.2.2 Power Operations of Relations TN il i 455

L Methods of power operations ¢ relation diagram &2 TONGJISEM
Let R be a relation on A = {a, b, c, d},

R = {<a,b>,<b,a>,<b,c>,<c,d>},

Using the relation diagram method, the relation diagrams

for RO, R1, R%, R3

R’ R'=R
RZ_R4 R3=R5
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4.2.2 Power Operations of Relations «The properties of a power operations TN ] 1 28 A

L periodicity or eventual stability & ToNGIISEM

m Theorem 4.4: The periodicity or eventual stability of a power
operation under finite exponents.

Let A be a set with n elements, and let R be a relation on A.
Then, there exist natural numbers s and t such that Rs = Rt.

m Proof Outline:

(1) Arelation R on A is a subset of AXA, which contains 2"" at most
pairs.

(2) Since each Rs is a subset of AXA, there are at most 27* distinct
possible relations.

(3) The sequence R: R% R', R2,R3,... has infinitely many indices but
only finitely many distinct relations 2"2, so by the pigeonhole
principle, there exist s=t such that RS = Rt.

]
CAMEA LN AAcSE  EQUIS

sEsmreMBAzE A E M




4.2.2 Power Operations of Relations «The properties of a power operations TN [l i 54

b Composition of Powers and Power of a Power properties & TONGISEM

m Theorem 4.5: Composition of Powers and Power of a Power
properties.
Let R be a relation on A, and m, nEN, Then
(1) RMoRnM = Rm+n
(2) (Rm)"= R

m Proof: By induction.
(1) For any given m&N, , we induct on n.
If n=0, then
R™oRO = R™Mo|,= RM = RM+0
Assume R™oR" = R™*n then
RmoR™1 = RMo(RMeR) = (RMoR")oR = RM*n*1
Thus, for all m, nEN 5§ RmMeRN = Rm+n,
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4.2.2 Power Operations of Relations «The properties of a power operations TN [l i 54

b Composition of Powers and Power of a Power properties & TONGISEM

m Theorem 4.5: Composition of Powers and Power of a Power
properties.
Let R be a relation on A, and m, nEN, Then
(1) RMoRnM = Rm+n
(2) (Rm)"= R

m Proof: By induction.
(2) For any given m&N, we induct on n.
If n = 0, then
(R™)0 = [, = RO = RmX0
Assume (R™)" = R™  then
(Rm)n+1 — (Rm)noRm —_ (Rmn)oRm = Rmn+m = Rm(n+1)
Thus, for any m, neN & (R™)" = Rmn,
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4.2.2 Power Operations of Relations «The properties of a power operations = 5o 454

L Stabilization, Periodicity and Finite State Constraint &2 TONGJISEM

m Theorem 4.6:, Stabilization, Periodicity and Finite State Constraint
in the Powers of a Relation
Let R be a relation on A. If there exist natural numbers s, ¢
(s<t) such that Rs = Rt, then

(1) For any k&N, Rs*k= Rt*k (Stabilization Property)
The two powers are equal and remain unchanged when the
same power is added.

(2) For any k, iEN Rs+kp+i = Rs*i where p = t-s
(Periodicity Property)
The period for the equality of the two powers is p
(3) Let S={RO,R1, ..., R}, then for any gEN, RIES
(Finite State Constraint )

The natural number powers of a relation R on a finite set
always have a period.
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4.2.2 Power Operations of Relations «The properties of a power operations = s 424

L Stabilization, Periodicity and Finite State Constraint &2 TONGJISEM

= Proof:
(1) Rs*k = RsoRk = RtoRk = Rt+k
(2) Induct on k. If k=0, then we have
Rs+0p+i = Rs+i
Assume Rs*kp+i = Rs*i where p = t—s, then
Rs+(k+1)p+i = Rs+kp+i+p = Rs+kp+ioRP
= RstioRP = RS*P+i = Rs+t-s+i = Rt+i = Rs+i

By the principle of mathematical induction, the proposition is
proven.
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4.2.2 Power Operations of Relations «The properties of a power operations = s 424

L Stabilization, Periodicity and Finite State Constraint &2 TONGJISEM

= Proof:
(3) For any g&N, if g<t, it is obvious that RIES.
If g=t, then there exist natural numbers k and 1 such that

q = s+kp+i, where O<isp-1.
Thus,

R4 = Rs+kp+i = Rs+i
Since s+i <s+p—1 = s+t—s—1 = t-—1
this proves that RIESS.
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4.2 Relational Operation ¢ Brief summary H,ﬂﬁf.?é’,}‘,

Objective :

Key Concepts :
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Chapter 4: Relations

&/ TONGJISEM

m 4.3 Properties of Relations
®m 4.4 Equivalence Relations and Partial Order

Relations
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T Il i

4.3 Properties of Relations &) ronensem

m4.3.1 Definition and Determination of Relation Properties
*Reflexivity and Irreflexivity
*Symmetry and Antisymmetry
*Transitivity
m4.3.2 Closure of Relations
*Definition of Closure
*Closure Calculation
*Warshall's Algorithm
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4.3.1 Definition and Determination of Relation Properties RN il o 0

LReflexivity and Irreflexivity & TONGISEM

Definition 4.14: Reflexivity and irreflexivity of Relations

Let R be a relation on A.
(1) If Vx(x&€A—<x,x>eR), then R is called reflexive on A.
(2) If Vx(x&€A—<x,x>¢R), then R is called irreflexive on A.
m Reflexive: The universal relation E, on A | the identity relation
l,, the less-than-or-equal relation L,, and the divisibility
relation D,.
m Irreflexive: The less-than relation(<) on the real number set
and the strict inclusion relation (&) on the power set.
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4.3.1 Definition and Determination of Relation Properties RN il o 0

LReflexivity and Irreflexivity(e.g.) &2/ TONGJISEM

DD Example° A = {a, b, c}, R,, R,, R, is the relation on A, where
= {<a,a>,<b,b>} , R, = {<a,a>,<b,b>,<c,c>,<a,b>}, Ry = {<a,c>}

To determme whether the relations R,, R,, R; are reflexive or irreflexive.
m Reflexivity check:

* Since (c,c)¢R,(c,c) , R, is not reflexive.

* Al of (a,a),(b,b),(c,c) are in R, , R, is reflexive.

* None of (a,a),(b,b),(c,c) are present, R; is not reflexive.
m Irreflexivity check:

° R, contains (a,a) and (b,b) ,meaning some elements have self-loops, R, is not

irreflexive.

* Since R, contains self-loops ((a,a),(b,b),(c,c)), R, is not irreflexive.

* R, does not contain any self-loops ((x, X)), R, is irreflexive.
m Final Summary: R, : Neither reflexive nor irreflexive; R, : Reflexive;

R; : Irreflexive
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4.3.1 Definition and Determination of Relation Properties RN [l 1 4405

LSymmetric & Antisymmetric &2/ TONGJISEM

m Definition 4.15: Symmetric and Antisymmetric of Relations.
Let R be a relation on A,
(1) If VxXVy(x,yEAA<X,y>ER—<y,x>&R), then R is called a
symmetric relation on A.
(2) If VXVy(x,yEAA<X,y>ERA<yY,x>ER—x=y), MIFRR is called an
antisymmetric relation on A.

® Such as:
Symmetric: The universal E, on A, the identity relation /,, and the
empty relation @.
Antisymmetric: The identity relation I, and the empty relation @ are
antisymmetric relations on A.

ENote: The formulas (1) and (2) iterates over all elements x,y in A, but
the actual constraint applies only to the elements in R.
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4.3.1 Definition and Determination of Relation Properties

LSymmetric & Antisymmetric (e.g.)
«2?Example 2: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...

R,={<a,a>,<b,b>},
R;={<a,b>,<a,c>},

R

= {<a, b>,<b,a>.<a, c>}

oS Il B 2845
&2 TONGJISEM

To determine whether the relations R,, R,, R; , R, are Symmetric or

Antisymmetric.
Symmetric check: Antisymmetric check: | Conclusion
VXVy(X,yEAA<X,Y> | VXVY(X,yEAA<X,Y>
ER—<y,x>&R) ERA<yY,Xx>ER—X=yY
R, R, only contains (a,a) Only contains reflexive Symmetric: [ Yes
and (b,b). elements (x,x) and does Symmetric: [ Yes
not include any (x,y) such
that x=y.
R, Every (x,y)ER,, the Contains and (b,a), but Symmetric: [ Yes

corresponding (y,X) is
also in R,.

a=b, which violates the
requirement that x=y.

Symmetric: X No

CAMEA

B = R & B

Roee  EQUIR



4.3.1 Definition and Determination of Relation Properties AN A A

LSymmetric & Antisymmetric (e.g.) & TONGJISEM

>>Example: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...
R,={<a,a>,<b,b>}, R,={<a,a>,<a,b>,<b,a>}
R,=1{<a,b>,<a,c>}, R,={<a,b>,<b,a>,<a,c>}
To determine whether the relations R,, R,, R; , R, are Symmetric or
Antisymmetric.
Symmetric check: |Antisymmetric check: Conclusion

VXVy(X,yEAA<X,Y |VXVYy(X,yEAA<X,y>
>&R—<y,x>&R) ERA<Y,Xx>ER—X=y

R3 (a,b)ER; but (b,a)ZR;, | no pairs (x,y) and (y,x) in | Symmetric: X No

and (a,c)ER; but R; for x=y, making the Symmetric: %4 Yes
(c,a)€R, condition trivially true.

R, | (a,c)ER, but (c,a)&R, (a,b)eR, and (b,a)ER,, |Symmetric: X No

but a=b Symmetric: X No
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4.3.1 Definition and Determination of Relation Properties RN [l 1 4405

LTransitive relation &2 TONGJI SEM

m Definition 4.16: transitive relation on A.

Let R be a relation on A. If
VXVyVz(x,y,ZzEAAN<X,Yy>ERA<Y,Z>ER—<X,Z>ER),
then R is called a transitive relation on A.

m Such as:The universal relation E, on A, the identity relation /,,
the empty relation @, the less-than-or-equal relation, the less-
than relation, the divisibility relation, the inclusion relation, and
the strict inclusion relation.
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4.3.1 Definition and Determination of Relation Properties il ¢ 44

% Transitive relation (e.g.) =/ TONGJISEM

> Example: Let A={a, b, c}, R, R,, R; relation on A, where
Ri={<a,a>,<b,b>}; R,={<a,b>,<b,c>}; R3;={<a,c>}
To determine whether the relations R,, R,, R; are Transitive
relation on A.

VXxVyVz(x,y,zEAA<X,y>ERA<y,z> | Conclusion

ER—<Xx,z>&ER)
R1 only contains reflexive elements and has no pairs | Transitive
that could violate transitivity. relation P4 Yes

R2 because (a,b)ER, and (b,c)ER,, but (a,c)€R, Transitive
relation X No

R3 contains only a single pair and has no chains to Transitive
check for transitivity violations. relation P4 Yes
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