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Chapter 4：Relations

 4.1 Definition and Representation of Relations

 4.2 Relational Operations

 4.3 Properties of Relations

 4.4 Equivalence Relations and Partial Order 

Relations



4.2 Relational Operation

4.2.1 Basic Operations of Relations

• Domain, range, domain (again), inverse, composition

• Properties of basic operations

4.2.2 Power Operations of Relations

•Definition of power operations

•Methods of power operations

•Properties of power operations



 4.2.1 Basic Operations of Relations
⤷Domain, Range, and Field

 Definition 4.10: Domain, Range, and Field
domR = {x | ∃y (<x,y>∈R) }
ranR = {y | ∃x (<x,y>∈R) }
fldR = domR ∪ ranR

Example:
R= {<a,{b}>,<c,d>,<{a},{d}>,<d,{d}>}, then

domR =
ranR =
fldR = { a, c, {a}, d, {b}, {d}}

{ a, c, {a}, d } 
{{b}, d, {d}}



4.2.1 Basic Operations of Relations

⤷ Inverse and Composition of Relations

 Definition 4.11: The inverse of R
R−1 = {<y,x> | <x,y>∈R}

 Definition 4.12: Composition of R and S
R∘S = |<x,z> | ∃ y (<x,y>∈R∧<y,z>∈S) } 

Example：R={<1,2>, <2,3>, <1,4>, <2,2>}
S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>} 
R−1 = 
R∘S = 
S∘R =

{<1,3>, <2,2>, <2,3> }

{<2,1>, <3,2>, <4,1>,<2,2>}

{<1,2>, <1,4>, <3,2>, <3,3>}



4.2.1 Basic Operations of Relations

⤷ Find the composition using a diagram
Use the diagrammatic (not relational diagram) method to 
find the composition.

Example：R={<1,2>, <2,3>, <1,4>, <2,2>}
S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>} 

R∘S ={<1,3>, <2,2>, <2,3>}

S∘R ={<1,2>, <1,4>, <3,2>, <3,3>}



4.2.1 Basic Operations of Relations

⤷Properties of Inverse Operations
Theorem 4.1：Let F be an arbitrary relation, then:

(1) (F−1)−1=F
(2) domF−1=ranF, ranF−1=domF

Proof：
(1) For any <x, y>, by the definition of inverse, we have<x, 

y>∈(F − 1)−1 ⇔ <y, x>∈F−1 ⇔ <x, y>∈F
Thus, (F−1)−1=F

(2) For any x,
x∈domF−1 ⇔ ∃y(<x, y>∈F−1) 
⇔ ∃y(<y, x>∈F) ⇔ x∈ranF

Thus, domF−1= ranF. 
Similarly, we can prove ranF−1 = domF.



4.2.1 Basic Operations of Relations

⤷Associativity and Inverse Operations of Relational Composition结合律
Theorem 4.2：

Let F, G, and H be arbitrary relations, then:
(1) (F∘G)∘H=F∘(G∘H)           
(2) (F∘G)−1= G−1∘F−1 

Proof (1) ：For any <x,y>, 
<x, y>∈(F∘G)∘H

⇔ ∃t (<x, t>∈F∘G∧<t, y>∈H)
⇔ ∃t (∃s (<x, s>∈F∧<s, t>∈G)∧<t, y>∈H)
⇔ ∃t ∃s (<x, s>∈F∧<s, t>∈G∧<t, y>∈H)
⇔ ∃s (<x, s>∈F∧∃t (<s, t>∈G∧<t, y>∈H))
⇔ ∃s (<x, s>∈F∧<s, y>∈G∘H)
⇔ <x, y>∈F∘(G∘H) 

Thus, (F∘G)∘H = F∘(G∘H)



4.2.1 Basic Operations of Relations

⤷Associativity and Inverse Operations of Relational Composition结合律
Theorem 4.2：

Let F, G, and H be arbitrary relations, then:
(1) (F∘G)∘H=F∘(G∘H)           
(2) (F∘G)−1= G−1∘F−1 

Proof (2)： For any <x, y>, 
<x, y>∈(F∘G)−1

⇔ <y, x>∈F∘G
⇔∃t (<y, t>∈F∧(t, x)∈G)
⇔∃t (<x, t>∈G−1∧(t, y)∈F−1)
⇔ <x, y>∈G−1∘F−1

Thus (F∘G)−1 = G−1∘F−1



4.2.1 Basic Operations of Relations
⤷ Relational Composition of the Identity Relation IA

Theorem 4.3： Composition of the Identity Relation IA

Let R be a relation on A, IA is the Identity Relation on Set A
then R∘IA= IA∘R = R

Proof For any pair <x, y>
<x, y>∈R∘IA

⇔ ∃t (<x, t>∈R∧<t, y>∈IA) 
⇔ ∃t (<x, t>∈R∧t=y∧y∈A)   

⇔ <x, y>∈R
Thus, R∘IA=R. 

Similarly, we can prove that IA∘R=R.



4.2.2 Power Operations of Relations
⤷ n-th power of R（Rn）

Definition 4.13： Rn

Let R be a relation on A, and n be a natural number. The n-
th power of R is defined as:
(1) R0 = {<x,x> | x∈A } = IA
(2) Rn+1 = Rn∘R

Note:
• For any relations R1 and R2 on A, we have,

R1
0 = R2

0 = IA
• For any relation R on A, we have: R1 = R



4.2.2 Power Operations of Relations
⤷Methods of power operations • matrix multiplication

For a relation R represented by a set, computing Rn means the 
composition of R with itself n times.
The n-th power of a relation is equal to the n-th power of its matrix 
representation.
The matrix representation of a relation is obtained by matrix 
multiplication, where addition is performed using logical addition.

Example:  设A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>}, 
Find the powers of R, and represent them using both a matrix and a 
relation diagram.

Solution: The relation matrix for R and R2 are as follows:

𝑴𝑴 =

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝑴𝑴𝟐𝟐 =

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

=

𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎



4.2.2 Power Operations of Relations
⤷Methods of power operations • matrix multiplication

Example:  Let A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>}, 
Find the powers of R, and represent them using both a matrix and a 
relation diagram.

Solution: The relation matrix for R3 and R4 are as follows:

Thus: M4 = M2, R4 = R2. Then we can find
R2 = R4 = R6 = …,   R3 = R5 = R7 = …

R0 = IA relation matrix :

𝑴𝑴𝟑𝟑 =

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

, 𝑴𝑴𝟒𝟒 =

𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝑴𝑴𝟎𝟎 =

𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏



4.2.2 Power Operations of Relations
⤷ Methods of power operations • relation diagram 

Let R be a relation on A = {a, b, c, d},
R = {<a,b>,<b,a>,<b,c>,<c,d>},
Using the relation diagram method, the relation diagrams 
for R0, R1, R2, R3



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ periodicity or eventual stability

Theorem 4.4： The periodicity or eventual stability of a power 
operation under finite exponents.
Let A be a set with n elements, and let R be a relation on A. 
Then, there exist natural numbers s and t such that Rs = Rt.

Proof Outline:

(1) A relation R on A is a subset of A×A, which contains 𝟐𝟐𝒏𝒏𝟐𝟐 at most 
pairs.

(2) Since each Rs is a subset of A×A, there are at most 𝟐𝟐𝒏𝒏𝟐𝟐 distinct 
possible relations.
(3) The sequence R: R0, R1, R2,R3,… has infinitely many indices but 
only finitely many distinct relations 𝟐𝟐𝒏𝒏𝟐𝟐, so by the pigeonhole 
principle, there exist s≠t such that Rs = Rt.



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Composition of Powers and Power of a Power properties

Theorem 4.5: Composition of Powers and Power of a Power 
properties.
Let R be a relation on A , and m, n∈N, Then

(1)  Rm∘Rn = Rm+n

(2)  (Rm)n = Rmn

Proof: By induction.
(1) For any given m∈N, , we induct on n. 

If n=0, then
Rm∘R0 = Rm∘IA= Rm = Rm+0 

Assume Rm∘Rn = Rm+n, then
Rm∘Rn+1 = Rm∘(Rn∘R) = (Rm∘Rn)∘R = Rm+n+1 , 

Thus, for all m, n∈N 有 Rm∘Rn = Rm+n. 



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Composition of Powers and Power of a Power properties

Theorem 4.5: Composition of Powers and Power of a Power 
properties.
Let R be a relation on A , and m, n∈N, Then

(1)  Rm∘Rn = Rm+n

(2)  (Rm)n = Rmn

 Proof: By induction.
(2) For any given m∈N, we induct on n.

If n = 0, then
(Rm)0 = IA = R0 = Rm×0

Assume (Rm)n = Rmn,  then
(Rm)n+1 = (Rm)n∘Rm = (Rmn)∘Rm = Rmn+m = Rm(n+1)

Thus, for any m, n∈N 有 (Rm)n = Rmn. 



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Stabilization, Periodicity and Finite State Constraint 

Theorem 4.6:, Stabilization, Periodicity and Finite State Constraint 
in the Powers of a Relation
Let R be a relation on A. If there exist natural numbers s, t 
(s<t) such that Rs = Rt, then
(1) For any k∈N, Rs+k = Rt+k (Stabilization Property)

The two powers are equal and remain unchanged when the 
same power is added.

(2) For any k, i∈N Rs+kp+i = Rs+i, where p = t−s
(Periodicity Property)

The period for the equality of the two powers is p
(3) Let S={R0,R1, …, Rt−1}, then for any q∈N, Rq∈S

(Finite State Constraint )
The natural number powers of a relation R on a finite set 

always have a period.



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Stabilization, Periodicity and Finite State Constraint 

Proof:

(1)  Rs+k = Rs∘Rk = Rt∘Rk = Rt+k

(2) Induct on k . If k=0, then we have

Rs+0p+i = Rs+i

Assume Rs+kp+i = Rs+i, where p = t−s, then

Rs+(k+1)p+i = Rs+kp+i+p = Rs+kp+i∘Rp

= Rs+i∘Rp = Rs+p+i = Rs+t−s+i = Rt+i = Rs+i

By the principle of mathematical induction, the proposition is 
proven.



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Stabilization, Periodicity and Finite State Constraint 

Proof:
(3) For any q∈N, if q<t, it is obvious that Rq∈S. 

If q≥t, then there exist natural numbers k and i such that

q = s+kp+i，where 0≤i≤p−1. 

Thus,

Rq = Rs+kp+i = Rs+i

Since s+i ≤s+p−1 = s+t−s−1 = t−1

this proves that Rq∈S.



4.2 Relational Operation • Brief summary

Objective :

Key Concepts ：
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Chapter 4：Relations

 4.1 Definition and Representation of Relations

 4.2 Relational Operations

 4.3 Properties of Relations

 4.4 Equivalence Relations and Partial Order 

Relations



4.3 Properties of Relations

4.3.1 Definition and Determination of Relation Properties

•Reflexivity and Irreflexivity

•Symmetry and Antisymmetry

•Transitivity

4.3.2 Closure of Relations

•Definition of Closure

•Closure Calculation

•Warshall's Algorithm



4.3.1 Definition and Determination of Relation Properties

⤷Reflexivity and Irreflexivity

 Definition 4.14: Reflexivity and irreflexivity of Relations
Let R be a relation on A.

(1) If ∀x(x∈A→<x,x>∈R), then R is called reflexive on A.
(2) If ∀x(x∈A→<x,x>∉R), then R is called irreflexive on A.

 Reflexive: The universal relation EA on A , the identity relation 

IA, the less-than-or-equal relation LA, and the divisibility 

relation DA.

 Irreflexive: The less-than relation(<) on the real number set 

and the strict inclusion relation (⊊) on the power set.



4.3.1 Definition and Determination of Relation Properties

⤷Reflexivity and Irreflexivity(e.g.)

Example: A = {a, b, c}, R1, R2, R3 is the relation on A,   where
R1 = {<a,a>,<b,b>} , R2 = {<a,a>,<b,b>,<c,c>,<a,b>}, R3 = {<a,c>}

To determine whether the relations R1, R2, R3 are reflexive or irreflexive.
 Reflexivity check:

• Since (c,c)∉R1(c,c) , R1 is not reflexive.
• All of (a,a),(b,b),(c,c) are in R2 , R2 is reflexive.
• None of (a,a),(b,b),(c,c) are present, R3 is not reflexive.

 Irreflexivity check: 
• R1 contains (a,a) and (b,b) ,meaning some elements have self-loops, R1 is not 

irreflexive.
• Since R2 contains self-loops ((a,a),(b,b),(c,c)), R2 is not irreflexive.
• R3 does not contain any self-loops ((x, x)), R2 is irreflexive.

 Final Summary: R1 ：Neither reflexive nor irreflexive; R2 : Reflexive;
R3 : Irreflexive



4.3.1 Definition and Determination of Relation Properties

⤷Symmetric & Antisymmetric

 Definition 4.15: Symmetric and Antisymmetric of Relations.
Let R be a relation on A,
(1) If ∀x∀y(x,y∈A∧<x,y>∈R→<y,x>∈R),  then R is called a 
symmetric relation on A.
(2) If ∀x∀y(x,y∈A∧<x,y>∈R∧<y,x>∈R→x=y),  则称R is called an 
antisymmetric relation on A.

 Such as:
Symmetric: The universal EA on A, the identity relation IA , and the 
empty relation ∅.
Antisymmetric: The identity relation IA  and the empty relation ∅ are 
antisymmetric relations on A.
Note: The formulas (1) and (2) iterates over all elements x,y in A, but 
the actual constraint applies only to the elements in R.



4.3.1 Definition and Determination of Relation Properties

⤷Symmetric & Antisymmetric (e.g.)

Example 2: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...
R1＝{<a,a>,<b,b>}， R2＝{<a,a>,<a,b>,<b,a>}
R3＝{<a,b>,<a,c>}， R4＝{<a,b>,<b,a>,<a,c>}

To determine whether the relations R1, R2, R3 , R4 are Symmetric or 
Antisymmetric.

Symmetric check:
∀x∀y(x,y∈A∧<x,y>
∈R→<y,x>∈R)

Antisymmetric check:
∀x∀y(x,y∈A∧<x,y>
∈R∧<y,x>∈R→x=y

Conclusion

R1 R1 only contains (a,a) 
and (b,b).

Only contains reflexive 
elements (x,x) and does 
not include any (x,y) such 
that x≠y.

Symmetric:✅Yes
Symmetric:✅Yes

R2 Every (x,y)∈R2, the 
corresponding (y,x) is 
also in R2.

Contains  and (b,a), but 
a≠b, which violates the 
requirement that x=y.

Symmetric:✅Yes
Symmetric:❌ No



4.3.1 Definition and Determination of Relation Properties

⤷Symmetric & Antisymmetric (e.g.)

Example: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...
R1＝{<a,a>,<b,b>}， R2＝{<a,a>,<a,b>,<b,a>}
R3＝{<a,b>,<a,c>}， R4＝{<a,b>,<b,a>,<a,c>}

To determine whether the relations R1, R2, R3 , R4 are Symmetric or 
Antisymmetric.

Symmetric check:
∀x∀y(x,y∈A∧<x,y
>∈R→<y,x>∈R)

Antisymmetric check:
∀x∀y(x,y∈A∧<x,y>
∈R∧<y,x>∈R→x=y

Conclusion

R3 (a,b)∈R3 but (b,a)∉R3, 
and (a,c)∈R3 but 
(c,a)∉R3

no pairs (x,y) and (y,x) in 
R3 for x≠y, making the 
condition trivially true.

Symmetric:❌ No
Symmetric:✅Yes

R4 (a,c)∈R4 but (c,a)∉R4 (a,b)∈R4 and (b,a)∈R4, 
but a≠b

Symmetric:❌ No
Symmetric:❌ No



4.3.1 Definition and Determination of Relation Properties

⤷Transitive relation 

 Definition 4.16: transitive relation on A.

Let R be a relation on A. If
∀x∀y∀z(x,y,z∈A∧<x,y>∈R∧<y,z>∈R→<x,z>∈R),
then R is called a transitive relation on A.

 Such as:The universal relation EA on A, the identity relation IA , 
the empty relation ∅, the less-than-or-equal relation, the less-
than relation, the divisibility relation, the inclusion relation, and 
the strict inclusion relation.



4.3.1 Definition and Determination of Relation Properties

⤷ Transitive relation (e.g.)

Example:  Let A＝{a, b, c}, R1, R2, R3 relation on A, where
R1＝{<a,a>,<b,b>}; R2＝{<a,b>,<b,c>};  R3＝{<a,c>}

To determine whether the relations R1, R2, R3 are Transitive    
relation on A.

∀x∀y∀z(x,y,z∈A∧<x,y>∈R∧<y,z>
∈R→<x,z>∈R)

Conclusion

R1
only contains reflexive elements and has no pairs 
that could violate transitivity.

Transitive 
relation ✅Yes

R2
because (a,b)∈R2​ and (b,c)∈R2​, but (a,c)∉R2 Transitive 

relation ❌ No

R3
contains only a single pair and has no chains to 
check for transitivity violations.

Transitive 
relation ✅Yes
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