

离散数学(011122)

魏可佶 <u>kejiwei@tongji.edu.cn</u> <u>https://kejiwei.github.io/</u>

- 4.1 Definition and Representation of Relations
- 4.2 Relational Operations
- 4.3 Properties of Relations
- 4.4 Equivalence Relations and Partial Order
 - Relations

4.2.1 Basic Operations of Relations

- Domain, range, domain (again), inverse, composition
- Properties of basic operations

4.2.2 Power Operations of Relations

- Definition of power operations
- •Methods of power operations
- Properties of power operations

■ Definition 4.10: Domain, Range, and Field $domR = \{x \mid \exists y (\langle x, y \rangle \in R)\}$ $ranR = \{y \mid \exists x (\langle x, y \rangle \in R)\}$ $fldR = domR \cup ranR$

4.2.1 Basic Operations of Relations

I Find the composition using a diagram

Use the diagrammatic (not relational diagram) method to find the composition.

www.Example: R={<1,2>, <2,3>, <1,4>, <2,2>}

S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>}

R∘*S* $R \circ S = \{ <1, 3 >, <2, 2 >, <2, 3 > \}$ $S \circ R = \{ <1,2 >, <1,4 >, <3,2 >, <3,3 > \}$

 $S \cdot R$

4.2.1 Basic Operations of Relations

Properties of Inverse Operations


```
    Theorem 4.1: Let F be an arbitrary relation, then:
    (1) (F<sup>-1</sup>)<sup>-1</sup>=F
    (2) domF<sup>-1</sup>=ranF, ranF<sup>-1</sup>=domF
```

Proof:

```
(1) For any <x, y>, by the definition of inverse, we have <x,
```

$$y \ge (F^{-1})^{-1} \Leftrightarrow \langle y, x \ge F^{-1} \Leftrightarrow \langle x, y \ge F$$

Thus, $(F^{-1})^{-1} = F$

(2) For any *x*,

```
x \in \text{dom}F^{-1} \Leftrightarrow \exists y(\langle x, y \rangle \in F^{-1})\Leftrightarrow \exists y(\langle y, x \rangle \in F) \Leftrightarrow x \in \text{ran}FThus, domF^{-1} = ranF.
```

Similarly, we can prove $ranF^{-1} = domF$.

4.2.1 Basic Operations of Relations **Associativity and Inverse Operations of Relational Composition** Theorem 4.2: Let F, G, and H be arbitrary relations, then: (1) $(F \circ G) \circ H = F \circ (G \circ H)$ (2) $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$ Proof (1) : For any <x,y>, <x, y>∈(F∘G)∘H $\Leftrightarrow \exists t (\langle x, t \rangle \in F \circ G \land \langle t, y \rangle \in H)$ $\Leftrightarrow \exists t \ (\exists s \ (\langle x, s \rangle \in F \land \langle s, t \rangle \in G) \land \langle t, y \rangle \in H)$ $\Leftrightarrow \exists t \exists s (\langle x, s \rangle \in F \land \langle s, t \rangle \in G \land \langle t, y \rangle \in H)$ $\Leftrightarrow \exists s (\langle x, s \rangle \in F \land \exists t (\langle s, t \rangle \in G \land \langle t, y \rangle \in H))$ $\Leftrightarrow \exists s \ (\langle x, s \rangle \in F \land \langle s, y \rangle \in G \circ H)$ $\Leftrightarrow \langle x, y \rangle \in F \circ (G \circ H)$ Thus, $(F \circ G) \circ H = F \circ (G \circ H)$

4.2.1 Basic Operations of Relations **Associativity and Inverse Operations of Relational Composition** Theorem 4.2: Let F, G, and H be arbitrary relations, then: (1) $(F \circ G) \circ H = F \circ (G \circ H)$ (2) $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$ **Proof** (2): For any $\langle x, y \rangle$, <*x*, *y*>∈(*F*∘*G*)⁻¹ ⇔<*y*, *x*>∈*F*∘*G* $\Leftrightarrow \exists t (\langle y, t \rangle \in F \land (t, x) \in G)$ $\Leftrightarrow \exists t (\langle x, t \rangle \in G^{-1} \land (t, y) \in F^{-1})$ $\Leftrightarrow <x, y> \in G^{-1} \circ F^{-1}$

Thus $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$

同济经管

Definition 4.13: Rⁿ

Let **R** be a relation on **A**, and **n** be a natural number. The **n**-

th power of R is defined as:

(1)
$$R^0 = \{ < x, x > | x \in A \} = I_A$$

(2) $R^{n+1} = R^n \circ R$

Note:

• For any relations R_1 and R_2 on A, we have,

$$R_1^0 = R_2^0 = I_A$$

• For any relation R on A, we have: $R^1 = R$

For a relation R represented by a set, computing R^n means the composition of R with itself n times.

The n-th power of a relation is equal to the n-th power of its matrix representation.

The matrix representation of a relation is obtained by matrix multiplication, where addition is performed using logical addition.

Example: 设A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>}, Find the powers of R, and represent them using both a matrix and a relation diagram.

Solution: The relation matrix for R and R^2 are as follows:

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad M^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

4.2.2 Power Operations of Relations • Methods of power operations • matrix multiplication

Example: Let A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>}, Find the powers of R, and represent them using both a matrix and a relation diagram.

Solution: The relation matrix for R^3 and R^4 are as follows:

$$M^{3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad M^{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus: $M^4 = M^2$, $R^4 = R^2$. Then we can find $R^2 = R^4 = R^6 = ..., R^3 = R^5 = R^7 = ...$ $R^0 = I_A$ relation matrix : $M^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

4.2.2 Power Operations of Relations **b** Methods of power operations **c** relation diagram

Let
$$R$$
 be a relation on $A = \{a, b, c, d\}$,

Using the relation diagram method, the relation diagrams

for **R**⁰, **R**¹, **R**², **R**³

 $R^3 = R^5$

4.2.2 Power Operations of Relations • The properties of a power operations
 • periodicity or eventual stability

Theorem 4.4: The periodicity or eventual stability of a power operation under finite exponents.

Let *A* be a set with *n* elements, and let *R* be a relation on *A*.

Then, there exist natural numbers s and t such that $R^s = R^t$.

Proof Outline:

(1) A relation R on A is a subset of $A \times A$, which contains 2^{n^2} at most pairs.

(2) Since each R^s is a subset of A×A, there are at most 2^{n^2} distinct possible relations.

(3) The sequence $R: R^0, R^1, R^2, R^3, ...$ has infinitely many indices but only finitely many distinct relations 2^{n^2} , so by the pigeonhole principle, there exist s≠t such that $R^s = R^t$.

4.2.2 Power Operations of Relations • The properties of a power operations
 Composition of Powers and Power of a Power properties

- Theorem 4.5: Composition of Powers and Power of a Power properties.
 - Let R be a relation on A, and $m, n \in \mathbb{N}$, Then
 - (1) $R^m \circ R^n = R^{m+n}$
 - (2) $(R^m)^n = R^{mn}$

Proof: By induction.

(1) For any given $m \in N$, , we induct on n. If n=0, then $R^m \circ R^0 = R^m \circ I_A = R^m = R^{m+0}$ Assume $R^m \circ R^n = R^{m+n}$, then $R^m \circ R^{n+1} = R^m \circ (R^n \circ R) = (R^m \circ R^n) \circ R = R^{m+n+1}$, Thus, for all $m, n \in \mathbb{N}$ 有 $R^m \circ R^n = R^{m+n}$.

4.2.2 Power Operations of Relations • The properties of a power operations
 Composition of Powers and Power of a Power properties

- Theorem 4.5: Composition of Powers and Power of a Power properties.
 - Let R be a relation on A, and $m, n \in \mathbb{N}$, Then
 - (1) $R^m \circ R^n = R^{m+n}$
 - (2) $(R^m)^n = R^{mn}$

Proof: By induction.

(2) For any given $m \in \mathbb{N}$, we induct on n. If n = 0, then $(R^m)^0 = I_A = R^0 = R^{m \times 0}$ Assume $(R^m)^n = R^{mn}$, then $(R^m)^{n+1} = (R^m)^n \circ R^m = (R^{mn}) \circ R^m = R^{mn+m} = R^{m(n+1)}$ Thus, for any $m, n \in \mathbb{N}$ 有 $(R^m)^n = R^{mn}$.

4.2.2 Power Operations of Relations • The properties of a power operations • Stabilization, Periodicity and Finite State Constraint

Theorem 4.6:, Stabilization, Periodicity and Finite State Constraint in the Powers of a Relation Let *R* be a relation on *A*. If there exist natural numbers *s*, *t* (*s*<*t*) such that *R^s* = *R^t*, then

(1) For any $k \in \mathbb{N}$, $R^{s+k} = R^{t+k}$ (Stabilization Property)

The two powers are equal and remain unchanged when the same power is added.

(2) For any k, $i \in \mathbb{N} R^{s+kp+i} = R^{s+i}$, where p = t-s

(Periodicity Property)

The period for the equality of the two powers is *p*

(3) Let $S = \{R^0, R^1, ..., R^{t-1}\}$, then for any $q \in \mathbb{N}$, $R^q \in S$

(Finite State Constraint)

The natural number powers of a relation R on a finite set always have a period.

4.2.2 Power Operations of Relations • The properties of a power operations
Stabilization, Periodicity and Finite State Constraint

Proof:

(1)
$$R^{s+k} = R^s \circ R^k = R^t \circ R^k = R^{t+k}$$

(2) Induct on k. If k=0, then we have

 $R^{s+0p+i} = R^{s+i}$

Assume $R^{s+kp+i} = R^{s+i}$, where p = t-s, then

 $R^{s+(k+1)p+i} = R^{s+kp+i+p} = R^{s+kp+i} \circ R^p$

$$= R^{s+i} \circ R^p = R^{s+p+i} = R^{s+t-s+i} = R^{t+i} = R^{s+i}$$

By the principle of mathematical induction, the proposition is proven.

4.2.2 Power Operations of Relations • The properties of a power operations
Stabilization, Periodicity and Finite State Constraint

Proof:

(3) For any $q \in \mathbb{N}$, if q < t, it is obvious that $R^q \in S$.

If $q \ge t$, then there exist natural numbers k and i such that

```
q = s + kp + i, where 0 \le i \le p - 1.
```

Thus,

 $R^{q} = R^{s+kp+i} = R^{s+i}$ Since $s+i \le s+p-1 = s+t-s-1 = t-1$ this proves that $R^{q} \in S$.

4.2 Relational Operation • Brief summary

Objective :

Key Concepts :

离散数学(011122)

魏可佶 <u>kejiwei@tongji.edu.cn</u> <u>https://kejiwei.github.io/</u>

- 4.1 Definition and Representation of Relations
- 4.2 Relational Operations
- 4.3 Properties of Relations
- 4.4 Equivalence Relations and Partial Order
 - Relations

4.3.1 Definition and Determination of Relation Properties

- Reflexivity and Irreflexivity
- Symmetry and Antisymmetry
- Transitivity
- 4.3.2 Closure of Relations
 - Definition of Closure
 - Closure Calculation
 - •Warshall's Algorithm

- Definition 4.14: Reflexivity and irreflexivity of Relations
 Let *R* be a relation on *A*.
 - (1) If $\forall x (x \in A \rightarrow \langle x, x \rangle \in R)$, then R is called *reflexive* on A.
 - (2) If $\forall x (x \in A \rightarrow \langle x, x \rangle \notin R)$, then R is called *irreflexive* on A.
- **Reflexive:** The universal relation E_A on A, the identity relation I_A , the less-than-or-equal relation L_A , and the divisibility relation D_A .
- Irreflexive: The less-than relation(<) on the real number set and the strict inclusion relation (⊊) on the power set.

 \blacksquare Example: $A = \{a, b, c\}, R_1, R_2, R_3$ is the relation on A, where

 $R_1 = \{ <a,a>, <b,b> \} , R_2 = \{ <a,a>, <b,b>, <c,c>, <a,b> \}, R_3 = \{ <a,c> \}$

To determine whether the relations R_1 , R_2 , R_3 are reflexive or irreflexive.

Reflexivity check:

- Since $(c,c) \notin R_1(c,c)$, R_1 is not reflexive.
- All of (a,a),(b,b),(c,c) are in R_2 , R_2 is reflexive.
- None of (a,a),(b,b),(c,c) are present, R₃ is **not reflexive**.

Irreflexivity check:

- *R*₁ contains (a,a) and (b,b) ,meaning some elements have self-loops, *R*₁ is not irreflexive.
- Since **R**₂ contains self-loops ((a,a),(b,b),(c,c)), **R**₂ is **not irreflexive**.
- R_3 does not contain any self-loops ((x, x)), R_2 is irreflexive.
- Final Summary: R₁: Neither reflexive nor irreflexive; R₂: Reflexive;
 R₃: Irreflexive

Definition 4.15: Symmetric and Antisymmetric of Relations. Let R be a relation on A,

(1) If $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in \mathbb{R} \rightarrow \langle y, x \rangle \in \mathbb{R})$, then R is called a symmetric relation on A.

(2) If $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$, 则称R is called an *antisymmetric relation* on A.

Such as:

Symmetric: The universal E_A on A, the identity relation I_A , and the empty relation \emptyset .

Antisymmetric: The identity relation I_A and the empty relation \emptyset are antisymmetric relations on A.

Note: The formulas (1) and (2) iterates over all elements x,y in A, but the actual constraint applies only to the elements in R.

Example 2: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...

 $R_1 = \{ <a,a>,<b,b> \}, R_2 = \{ <a,a>,<a,b>,<b,a> \}$

 $R_3 = \{ <a,b>,<a,c> \}, R_4 = \{ <a,b>,<b,a>,<a,c> \}$

To determine whether the relations R_1 , R_2 , R_3 , R_4 are Symmetric or Antisymmetric.

	Symmetric check: $\forall x \forall y (x, y \in A \land \langle x, y \rangle)$ $\in \mathbb{R} \rightarrow \langle y, x \rangle \in \mathbb{R}$	Antisymmetric check: $\forall x \forall y (x, y \in A \land \langle x, y \rangle)$ $\in R \land \langle y, x \rangle \in R \rightarrow x = y$	Conclusion
R ₁	R ₁ only contains (a,a) and (b,b).	Only contains reflexive elements (x,x) and does not include any (x,y) such that x≠y.	Symmetric: Yes Symmetric: Yes
R ₂	Every $(x,y) \in R_2$, the corresponding (y,x) is also in R_2 .	Contains and (b,a), but a≠b, which violates the requirement that x=y.	Symmetric: Yes Symmetric: X No

Example: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where... $R_1 = \{\langle a,a \rangle, \langle b,b \rangle\}, R_2 = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle\}$

$$R_3 = \{ , \}, R_4 = \{ , , \}$$

To determine whether the relations R_1 , R_2 , R_3 , R_4 are Symmetric or Antisymmetric.

	Symmetric check:	Antisymmetric check:	Conclusion
	∀x∀y(x,y∈A∧ <x,y< th=""><th>$\forall x \forall y (x, y \in A \land \langle x, y \rangle)$</th><th></th></x,y<>	$\forall x \forall y (x, y \in A \land \langle x, y \rangle)$	
	>∈R→ <y,x>∈R)</y,x>	$\in R \land \langle y, x \rangle \in R \rightarrow x = y$	
R ₃	(a,b)∈ R_3 but (b,a)∉ R_3 , and (a,c)∈ R_3 but (c,a)∉ R_3	no pairs (x,y) and (y,x) in R_3 for $x \neq y$, making the condition trivially true.	Symmetric: X No Symmetric: Yes
R ₄	(a,c)∈ R ₄ but (c,a)∉ R ₄	(a,b) $\in \mathbf{R}_4$ and (b,a) $\in \mathbf{R}_4$, but a≠b	Symmetric: X No Symmetric: X No

回济经管 TONGJI SEM

Definition 4.16: transitive relation on A.
 Let *R* be a relation on *A*. If
 ∀x∀y∀z(x,y,z∈A∧<x,y>∈R∧<y,z>∈R→<x,z>∈R),
 then *R* is called a transitive relation on A.

Such as: The universal relation E_A on A, the identity relation I_A , the empty relation \emptyset , the less-than-or-equal relation, the lessthan relation, the divisibility relation, the inclusion relation, and the strict inclusion relation.

Transitive relation (e.g.)

Second S

	$\forall x \forall y \forall z(x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \\ \in R \rightarrow \langle x,z \rangle \in R)$	Conclusion
R ₁	only contains reflexive elements and has no pairs that could violate transitivity.	Transitive relation Yes
R ₂	because (a,b) $\in R_2$ and (b,c) $\in R_2$, but (a,c) $\notin R_2$	Transitive relation 🗙 No
R ₃	contains only a single pair and has no chains to check for transitivity violations.	Transitive relation Yes

