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Chapter 4：Relations

 4.1 Definition and Representation of Relations

 4.2 Relational Operations

 4.3 Properties of Relations

 4.4 Equivalence Relations and Partial Order 

Relations



4.2 Relational Operation

4.2.1 Basic Operations of Relations

• Domain, range, domain (again), inverse, composition

• Properties of basic operations

4.2.2 Power Operations of Relations

•Definition of power operations

•Methods of power operations

•Properties of power operations



 4.2.1 Basic Operations of Relations
⤷Domain, Range, and Field

 Definition 4.10: Domain, Range, and Field
domR = {x | ∃y (<x,y>∈R) }
ranR = {y | ∃x (<x,y>∈R) }
fldR = domR ∪ ranR

Example:
R= {<a,{b}>,<c,d>,<{a},{d}>,<d,{d}>}, then

domR =
ranR =
fldR = { a, c, {a}, d, {b}, {d}}

{ a, c, {a}, d } 
{{b}, d, {d}}



4.2.1 Basic Operations of Relations

⤷ Inverse and Composition of Relations

 Definition 4.11: The inverse of R
R−1 = {<y,x> | <x,y>∈R}

 Definition 4.12: Composition of R and S
R∘S = |<x,z> | ∃ y (<x,y>∈R∧<y,z>∈S) } 

Example：R={<1,2>, <2,3>, <1,4>, <2,2>}
S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>} 
R−1 = 
R∘S = 
S∘R =

{<1,3>, <2,2>, <2,3> }

{<2,1>, <3,2>, <4,1>,<2,2>}

{<1,2>, <1,4>, <3,2>, <3,3>}



4.2.1 Basic Operations of Relations

⤷ Find the composition using a diagram
Use the diagrammatic (not relational diagram) method to 
find the composition.

Example：R={<1,2>, <2,3>, <1,4>, <2,2>}
S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>} 

R∘S ={<1,3>, <2,2>, <2,3>}

S∘R ={<1,2>, <1,4>, <3,2>, <3,3>}



4.2.1 Basic Operations of Relations

⤷Properties of Inverse Operations
Theorem 4.1：Let F be an arbitrary relation, then:

(1) (F−1)−1=F
(2) domF−1=ranF, ranF−1=domF

Proof：
(1) For any <x, y>, by the definition of inverse, we have<x, 

y>∈(F − 1)−1 ⇔ <y, x>∈F−1 ⇔ <x, y>∈F
Thus, (F−1)−1=F

(2) For any x,
x∈domF−1 ⇔ ∃y(<x, y>∈F−1) 
⇔ ∃y(<y, x>∈F) ⇔ x∈ranF

Thus, domF−1= ranF. 
Similarly, we can prove ranF−1 = domF.



4.2.1 Basic Operations of Relations

⤷Associativity and Inverse Operations of Relational Composition结合律
Theorem 4.2：

Let F, G, and H be arbitrary relations, then:
(1) (F∘G)∘H=F∘(G∘H)           
(2) (F∘G)−1= G−1∘F−1 

Proof (1) ：For any <x,y>, 
<x, y>∈(F∘G)∘H

⇔ ∃t (<x, t>∈F∘G∧<t, y>∈H)
⇔ ∃t (∃s (<x, s>∈F∧<s, t>∈G)∧<t, y>∈H)
⇔ ∃t ∃s (<x, s>∈F∧<s, t>∈G∧<t, y>∈H)
⇔ ∃s (<x, s>∈F∧∃t (<s, t>∈G∧<t, y>∈H))
⇔ ∃s (<x, s>∈F∧<s, y>∈G∘H)
⇔ <x, y>∈F∘(G∘H) 

Thus, (F∘G)∘H = F∘(G∘H)



4.2.1 Basic Operations of Relations

⤷Associativity and Inverse Operations of Relational Composition结合律
Theorem 4.2：

Let F, G, and H be arbitrary relations, then:
(1) (F∘G)∘H=F∘(G∘H)           
(2) (F∘G)−1= G−1∘F−1 

Proof (2)： For any <x, y>, 
<x, y>∈(F∘G)−1

⇔ <y, x>∈F∘G
⇔∃t (<y, t>∈F∧(t, x)∈G)
⇔∃t (<x, t>∈G−1∧(t, y)∈F−1)
⇔ <x, y>∈G−1∘F−1

Thus (F∘G)−1 = G−1∘F−1



4.2.1 Basic Operations of Relations
⤷ Relational Composition of the Identity Relation IA

Theorem 4.3： Composition of the Identity Relation IA

Let R be a relation on A, IA is the Identity Relation on Set A
then R∘IA= IA∘R = R

Proof For any pair <x, y>
<x, y>∈R∘IA

⇔ ∃t (<x, t>∈R∧<t, y>∈IA) 
⇔ ∃t (<x, t>∈R∧t=y∧y∈A)   

⇔ <x, y>∈R
Thus, R∘IA=R. 

Similarly, we can prove that IA∘R=R.



4.2.2 Power Operations of Relations
⤷ n-th power of R（Rn）

Definition 4.13： Rn

Let R be a relation on A, and n be a natural number. The n-
th power of R is defined as:
(1) R0 = {<x,x> | x∈A } = IA
(2) Rn+1 = Rn∘R

Note:
• For any relations R1 and R2 on A, we have,

R1
0 = R2

0 = IA
• For any relation R on A, we have: R1 = R



4.2.2 Power Operations of Relations
⤷Methods of power operations • matrix multiplication

For a relation R represented by a set, computing Rn means the 
composition of R with itself n times.
The n-th power of a relation is equal to the n-th power of its matrix 
representation.
The matrix representation of a relation is obtained by matrix 
multiplication, where addition is performed using logical addition.

Example:  设A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>}, 
Find the powers of R, and represent them using both a matrix and a 
relation diagram.

Solution: The relation matrix for R and R2 are as follows:

𝑴𝑴 =

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝑴𝑴𝟐𝟐 =

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

=

𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎



4.2.2 Power Operations of Relations
⤷Methods of power operations • matrix multiplication

Example:  Let A = {a, b, c, d}, R = {<a,b>,<b,a>,<b,c>,<c,d>}, 
Find the powers of R, and represent them using both a matrix and a 
relation diagram.

Solution: The relation matrix for R3 and R4 are as follows:

Thus: M4 = M2, R4 = R2. Then we can find
R2 = R4 = R6 = …,   R3 = R5 = R7 = …

R0 = IA relation matrix :

𝑴𝑴𝟑𝟑 =

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

, 𝑴𝑴𝟒𝟒 =

𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝑴𝑴𝟎𝟎 =

𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏



4.2.2 Power Operations of Relations
⤷ Methods of power operations • relation diagram 

Let R be a relation on A = {a, b, c, d},
R = {<a,b>,<b,a>,<b,c>,<c,d>},
Using the relation diagram method, the relation diagrams 
for R0, R1, R2, R3



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ periodicity or eventual stability

Theorem 4.4： The periodicity or eventual stability of a power 
operation under finite exponents.
Let A be a set with n elements, and let R be a relation on A. 
Then, there exist natural numbers s and t such that Rs = Rt.

Proof Outline:

(1) A relation R on A is a subset of A×A, which contains 𝟐𝟐𝒏𝒏𝟐𝟐 at most 
pairs.

(2) Since each Rs is a subset of A×A, there are at most 𝟐𝟐𝒏𝒏𝟐𝟐 distinct 
possible relations.
(3) The sequence R: R0, R1, R2,R3,… has infinitely many indices but 
only finitely many distinct relations 𝟐𝟐𝒏𝒏𝟐𝟐, so by the pigeonhole 
principle, there exist s≠t such that Rs = Rt.



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Composition of Powers and Power of a Power properties

Theorem 4.5: Composition of Powers and Power of a Power 
properties.
Let R be a relation on A , and m, n∈N, Then

(1)  Rm∘Rn = Rm+n

(2)  (Rm)n = Rmn

Proof: By induction.
(1) For any given m∈N, , we induct on n. 

If n=0, then
Rm∘R0 = Rm∘IA= Rm = Rm+0 

Assume Rm∘Rn = Rm+n, then
Rm∘Rn+1 = Rm∘(Rn∘R) = (Rm∘Rn)∘R = Rm+n+1 , 

Thus, for all m, n∈N 有 Rm∘Rn = Rm+n. 



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Composition of Powers and Power of a Power properties

Theorem 4.5: Composition of Powers and Power of a Power 
properties.
Let R be a relation on A , and m, n∈N, Then

(1)  Rm∘Rn = Rm+n

(2)  (Rm)n = Rmn

 Proof: By induction.
(2) For any given m∈N, we induct on n.

If n = 0, then
(Rm)0 = IA = R0 = Rm×0

Assume (Rm)n = Rmn,  then
(Rm)n+1 = (Rm)n∘Rm = (Rmn)∘Rm = Rmn+m = Rm(n+1)

Thus, for any m, n∈N 有 (Rm)n = Rmn. 



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Stabilization, Periodicity and Finite State Constraint 

Theorem 4.6:, Stabilization, Periodicity and Finite State Constraint 
in the Powers of a Relation
Let R be a relation on A. If there exist natural numbers s, t 
(s<t) such that Rs = Rt, then
(1) For any k∈N, Rs+k = Rt+k (Stabilization Property)

The two powers are equal and remain unchanged when the 
same power is added.

(2) For any k, i∈N Rs+kp+i = Rs+i, where p = t−s
(Periodicity Property)

The period for the equality of the two powers is p
(3) Let S={R0,R1, …, Rt−1}, then for any q∈N, Rq∈S

(Finite State Constraint )
The natural number powers of a relation R on a finite set 

always have a period.



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Stabilization, Periodicity and Finite State Constraint 

Proof:

(1)  Rs+k = Rs∘Rk = Rt∘Rk = Rt+k

(2) Induct on k . If k=0, then we have

Rs+0p+i = Rs+i

Assume Rs+kp+i = Rs+i, where p = t−s, then

Rs+(k+1)p+i = Rs+kp+i+p = Rs+kp+i∘Rp

= Rs+i∘Rp = Rs+p+i = Rs+t−s+i = Rt+i = Rs+i

By the principle of mathematical induction, the proposition is 
proven.



4.2.2 Power Operations of Relations •The properties of a power operations 
⤷ Stabilization, Periodicity and Finite State Constraint 

Proof:
(3) For any q∈N, if q<t, it is obvious that Rq∈S. 

If q≥t, then there exist natural numbers k and i such that

q = s+kp+i，where 0≤i≤p−1. 

Thus,

Rq = Rs+kp+i = Rs+i

Since s+i ≤s+p−1 = s+t−s−1 = t−1

this proves that Rq∈S.



4.2 Relational Operation • Brief summary

Objective :

Key Concepts ：
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Chapter 4：Relations
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 4.2 Relational Operations
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 4.4 Equivalence Relations and Partial Order 

Relations



4.3 Properties of Relations

4.3.1 Definition and Determination of Relation Properties

•Reflexivity and Irreflexivity

•Symmetry and Antisymmetry

•Transitivity

4.3.2 Closure of Relations

•Definition of Closure

•Closure Calculation

•Warshall's Algorithm



4.3.1 Definition and Determination of Relation Properties

⤷Reflexivity and Irreflexivity

 Definition 4.14: Reflexivity and irreflexivity of Relations
Let R be a relation on A.

(1) If ∀x(x∈A→<x,x>∈R), then R is called reflexive on A.
(2) If ∀x(x∈A→<x,x>∉R), then R is called irreflexive on A.

 Reflexive: The universal relation EA on A , the identity relation 

IA, the less-than-or-equal relation LA, and the divisibility 

relation DA.

 Irreflexive: The less-than relation(<) on the real number set 

and the strict inclusion relation (⊊) on the power set.



4.3.1 Definition and Determination of Relation Properties

⤷Reflexivity and Irreflexivity(e.g.)

Example: A = {a, b, c}, R1, R2, R3 is the relation on A,   where
R1 = {<a,a>,<b,b>} , R2 = {<a,a>,<b,b>,<c,c>,<a,b>}, R3 = {<a,c>}

To determine whether the relations R1, R2, R3 are reflexive or irreflexive.
 Reflexivity check:

• Since (c,c)∉R1(c,c) , R1 is not reflexive.
• All of (a,a),(b,b),(c,c) are in R2 , R2 is reflexive.
• None of (a,a),(b,b),(c,c) are present, R3 is not reflexive.

 Irreflexivity check: 
• R1 contains (a,a) and (b,b) ,meaning some elements have self-loops, R1 is not 

irreflexive.
• Since R2 contains self-loops ((a,a),(b,b),(c,c)), R2 is not irreflexive.
• R3 does not contain any self-loops ((x, x)), R2 is irreflexive.

 Final Summary: R1 ：Neither reflexive nor irreflexive; R2 : Reflexive;
R3 : Irreflexive



4.3.1 Definition and Determination of Relation Properties

⤷Symmetric & Antisymmetric

 Definition 4.15: Symmetric and Antisymmetric of Relations.
Let R be a relation on A,
(1) If ∀x∀y(x,y∈A∧<x,y>∈R→<y,x>∈R),  then R is called a 
symmetric relation on A.
(2) If ∀x∀y(x,y∈A∧<x,y>∈R∧<y,x>∈R→x=y),  则称R is called an 
antisymmetric relation on A.

 Such as:
Symmetric: The universal EA on A, the identity relation IA , and the 
empty relation ∅.
Antisymmetric: The identity relation IA  and the empty relation ∅ are 
antisymmetric relations on A.
Note: The formulas (1) and (2) iterates over all elements x,y in A, but 
the actual constraint applies only to the elements in R.



4.3.1 Definition and Determination of Relation Properties

⤷Symmetric & Antisymmetric (e.g.)

Example 2: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...
R1＝{<a,a>,<b,b>}， R2＝{<a,a>,<a,b>,<b,a>}
R3＝{<a,b>,<a,c>}， R4＝{<a,b>,<b,a>,<a,c>}

To determine whether the relations R1, R2, R3 , R4 are Symmetric or 
Antisymmetric.

Symmetric check:
∀x∀y(x,y∈A∧<x,y>
∈R→<y,x>∈R)

Antisymmetric check:
∀x∀y(x,y∈A∧<x,y>
∈R∧<y,x>∈R→x=y

Conclusion

R1 R1 only contains (a,a) 
and (b,b).

Only contains reflexive 
elements (x,x) and does 
not include any (x,y) such 
that x≠y.

Symmetric:✅Yes
Symmetric:✅Yes

R2 Every (x,y)∈R2, the 
corresponding (y,x) is 
also in R2.

Contains  and (b,a), but 
a≠b, which violates the 
requirement that x=y.

Symmetric:✅Yes
Symmetric:❌ No



4.3.1 Definition and Determination of Relation Properties

⤷Symmetric & Antisymmetric (e.g.)

Example: Let A={a,b,c}, and R1,R2,R3 and R4 are relations on A, where...
R1＝{<a,a>,<b,b>}， R2＝{<a,a>,<a,b>,<b,a>}
R3＝{<a,b>,<a,c>}， R4＝{<a,b>,<b,a>,<a,c>}

To determine whether the relations R1, R2, R3 , R4 are Symmetric or 
Antisymmetric.

Symmetric check:
∀x∀y(x,y∈A∧<x,y
>∈R→<y,x>∈R)

Antisymmetric check:
∀x∀y(x,y∈A∧<x,y>
∈R∧<y,x>∈R→x=y

Conclusion

R3 (a,b)∈R3 but (b,a)∉R3, 
and (a,c)∈R3 but 
(c,a)∉R3

no pairs (x,y) and (y,x) in 
R3 for x≠y, making the 
condition trivially true.

Symmetric:❌ No
Symmetric:✅Yes

R4 (a,c)∈R4 but (c,a)∉R4 (a,b)∈R4 and (b,a)∈R4, 
but a≠b

Symmetric:❌ No
Symmetric:❌ No



4.3.1 Definition and Determination of Relation Properties

⤷Transitive relation 

 Definition 4.16: transitive relation on A.

Let R be a relation on A. If
∀x∀y∀z(x,y,z∈A∧<x,y>∈R∧<y,z>∈R→<x,z>∈R),
then R is called a transitive relation on A.

 Such as:The universal relation EA on A, the identity relation IA , 
the empty relation ∅, the less-than-or-equal relation, the less-
than relation, the divisibility relation, the inclusion relation, and 
the strict inclusion relation.



4.3.1 Definition and Determination of Relation Properties

⤷ Transitive relation (e.g.)

Example:  Let A＝{a, b, c}, R1, R2, R3 relation on A, where
R1＝{<a,a>,<b,b>}; R2＝{<a,b>,<b,c>};  R3＝{<a,c>}

To determine whether the relations R1, R2, R3 are Transitive    
relation on A.

∀x∀y∀z(x,y,z∈A∧<x,y>∈R∧<y,z>
∈R→<x,z>∈R)

Conclusion

R1
only contains reflexive elements and has no pairs 
that could violate transitivity.

Transitive 
relation ✅Yes

R2
because (a,b)∈R2 and (b,c)∈R2, but (a,c)∉R2 Transitive 

relation ❌ No

R3
contains only a single pair and has no chains to 
check for transitivity violations.

Transitive 
relation ✅Yes
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